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Società Italiana di Fisica
Springer-Verlag 2001

On the relation between the wave aberration function
and the phase transfer function for an incoherent imaging system
with circular pupil

A.B. Utkin1,a, R. Vilar1, and A.J. Smirnov2
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Abstract. The consideration is carried out in its general formulation: the wave aberration function is rep-
resented in terms of classical aberrations (the Zernike polynomials), the phase transfer function (argument
of the complex optical transfer function) is defined by a chain of transformations originating from the
generalized pupil function. Quasi-analytical quadrature formulas are derived that link the optical transfer
function and the phase transfer function with the aberration terms. It is shown that the phase transfer
function contains information on the odd-order aberrations, which can be retrieved from coefficients to the
Taylor expansion of the derived quadrature relation.

PACS. 42.30.Lr Modulation and optical transfer functions – 42.30.Rx Phase retrieval

The phase distortion of an initially plane transverse ref-
erence wave by an optical system can be quantitatively
represented by the wave aberration function Ψ (x, y) de-
scribing the phase distribution at the exit pupil plane XY .
In the presence of wave aberrations the generalized pupil
function P (x, y) is characterized by the complex value

P (x, y) = A (x, y) eiΨ(x,y), (1)

where i =
√
−1 and the pupil function A (x, y) is unity

inside and zero outside the pupil aperture. In the image
plane XimYim the distorted wavefront produces the coher-
ent impulse response [1]

Hc (xim, yim) =
C

λz

∫∫ +∞

−∞
P (x, y) e−i 2π

λz (ximx+yimy)dxdy,

(2)

where λ is the operating wavelength of a (monochromatic)
image detector, z is the distance between the exit pupil
and the image plane, and C is a constant amplitude. In
this paper we discuss an imaging system that uses inco-
herent illumination. Such systems are characterized by the
incoherent impulse response

H (xim, yim) = Hc (xim, yim)H∗c (xim, yim) . (3)
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The optical transfer function (OTF) is defined in the space
of the spatial frequencies u and v along x and y axes as a
Fourier image of the incoherent impulse response

Hf (u, v) =

∫∫ +∞
−∞ H (xim, yim) e−i2π(ximu+yimv)dximdyim∫∫ +∞

−∞ H (xim, yim) dximdyim

·

(4)

This function can be represented in the modulus-argument
notation as follows

Hf (u, v) = B (u, v) eiΦ(u,v), B (u, v) = |Hf (u, v)| ,
Φ (u, v) = arg (H (u, v)) , (5)

where the real functions B (u, v) and Φ (u, v) are referred
to as the modulation transfer function and the phase trans-
fer function respectively.

The problem of partial restoration of the wave aber-
ration function from some measured characteristics of the
OTF is one of the central issues of the Fourier and adap-
tive optics. Today’s researches involve computer-aided
techniques [2–4] and investigation of specific cases (for ex-
ample, graded-index optical systems [5]) accompanied by
the introduction of new conceptions, such as the pseudo
modulation transfer function [6], and novel mathemati-
cal methods, e.g., wavelet and time-frequency analysis [7].
In the present work we will focus on the poorly exam-
ined phase transfer function, rather than on the OTF and
the modulation transfer function. Apart from its own sci-
entific interest, this research is stimulated by our recent
investigations [8] that indicate the possibility to retrieve,
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Fig. 1. Calculation of the optical transfer function: coordinate
systems, integration domain, and parameters.

in some particular cases, the phase transfer function en-
tirely via the statistical analysis of the spatial spectra of
a sufficiently large set of images, without any additional
equipment and measurements.

We will define what information about the wave aber-
rations is still retained in the phase transfer function after
the transformation chain (1–5) starting from the explicit
relation between Hf (u, v) and P (x, y), equivalent to that
discussed in Goodman’s book [1],

Hf (u, v) =
1
Sp

∫∫ +∞

−∞
P

(
x− 1

2
λzu, y − 1

2
λzv

)
× P ∗

(
x+

1
2
λzu, y +

1
2
λzv

)
dxdy (6)

that can be obtained by direct substitution of equa-
tions (3) and (2) into definition (4). Here Sp is the area of
the exit pupil.

From here on we will discuss a circular pupil of radius
R, for which

A (x, y) = h

(
1−

√
x2 + y2

R

)
, h (ς) =

{
0 ς < 0
1 ς ≥ 0

,

and actual domain of integration is the intersection of two
circles shown in Figure 1. We first express the OTF via the
frequency-domain dimensionless polar coordinates ρ, α

u =
2R
λz
ρ cosα, v =

2R
λz
ρ sinα (7)

and, then, pass to the dimensionless Cartesian coordinates

ξ =
x

R
cosα+

y

R
sinα, η = − x

R
sinα+

y

R
cosα, (8)

which coincide with the axes of symmetry of the inte-
gration domain. Using this symmetry, one can represent
Hf (u, v) via its polar-coordinate counterpart Hfp (ρ, α) as
follows

Hf (u, v) = Hfp

(
ρ =

λz

2R

√
u2 + v2, α = arg (u+ iv)

)
=

1
π

∫ √1−ρ2

0

∫ √1−η2−ρ

−
�√

1−η2−ρ
�
(

ei[Ψα(ξ,−ρ,η)−Ψα(ξ,ρ,η)]

+e−i[Ψα(−ξ,ρ,−η)−Ψα(−ξ,−ρ,−η)]
)

dξdη, (9)

where

Ψα (ξ,±ρ, η) = Ψ(x = [(ξ ± ρ) cosα− η sinα]R,
y = [(ξ ± ρ) sinα+ η cosα]R) (10)

and 0 ≤ ρ ≤ 1, as for the area ρ > 1 one has Hfp ≡ 0.
Let us follow the traditional way of analysis of the

wave distortion by its decomposition into a set of classic
aberration terms — the Zernike polynomials Zmn (r, ϕ) [9]

Ψ (x, y) = Ψp (r, ϕ) =
∑
n,m

Ψn,mZ
m
n (r, ϕ) , (11)

where Ψp (r, ϕ) is the representation of Ψ (x, y) in the polar
coordinates r =

√
x2 + y2/R, ϕ = arg (x+ iy), n ≤ 0,

−n ≤ m ≤ n, n− |m| is even, and

Zmn (r, ϕ) =

{
Rmn (r) cos (mϕ) m ≥ 0
R
|m|
n (r) sin (mϕ) m < 0

,

Rmn (r) =
(n−m)/2∑
k=0

(−1)k (n− k)!
k!
(
n+m

2 − k
)
!
(
n−m

2 − k
)
!
rn−2k.

(12)

This allows us to rewrite expansion (11) explicitly as a sum
of even and odd aberrations Ψp (r, ϕ) = Ve (r, ϕ)+Vo (r, ϕ),
where

Ve (r, ϕ) =
∞∑
n=0

n∑
m=−n

Ψ2n,2mZ
2m
2n (r, ϕ) ,

Vo (r, ϕ) =
∞∑
n=0

n∑
m=−n−1

Ψ2n+1,2m+1Z
2m+1
2n+1 (r, ϕ) . (13)

A principal point of our consideration is that, apart from
the explicit formulas for the Zernike polynomials, the
polar-coordinate representation r, ϕ gives us one more se-
rious advantage, namely, the phase components in the in-
tegrand of the OTF representation (9) are expressed in a
shorter two-argument form

Ψα (ξ,−ρ, η) = Ψp (r−, ϕ−) , Ψα (ξ, ρ, η) = Ψp (r+, ϕ+) ,
Ψα (−ξ, ρ,−η) = Ψp (r−, ϕ− + π) ,
Ψα (−ξ,−ρ,−η) = Ψp (r+, ϕ+ + π) ,
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where r± =
√

(ξ ± ρ)2 + η2, ϕ± = arg (ξ ± ρ+ iη) +
α. Noticing that Ve (r±, ϕ± + π) = Ve (r±, ϕ±) and
Vo (r±, ϕ± + π) = −Vo (r±, ϕ±), we get polar-coordinate
representations of the OTF and the phase transfer func-
tion via the classic aberration terms, in which the inte-
grand has some similarity with signals of the lateral shar-
ing interferometry [10]

Hfp (ρ, α) =
2
π

∫ √1−ρ2

0

∫ √1−η2−ρ

−
�√

1−η2−ρ
� cos (Ve (r+, ϕ+)

−Ve (r−, ϕ−)) e−i[Vo(r+,ϕ+)−Vo(r−,ϕ−)]dξdη, (14)

Φ (u, v) = Φp

(
ρ =

λz

2R

√
u2 + v2, α = arg (u+ iv)

)

= arg

(∫ √1−ρ2

0

∫ √1−η2−ρ

−
�√

1−η2−ρ
� cos (Ve (r+, ϕ+)

−Ve (r−, ϕ−)) e−i[Vo(r+,ϕ+)−Vo(r−,ϕ−)]dξdη
)
. (15)

For further analysis let us turn to representation of Φp

through the Taylor series in the vicinity of ρ = 1. Intro-
ducing the expansion parameter ε =

√
1− ρ2 and chang-

ing the variables η → εµ, ξ → ε2γ, we get

Φp (ρ, α) = arg
(∫ 1

0

∫ γ0

−γ0

cos (Ve (r+, ϕ+)− Ve (r−, ϕ−))

× exp (−i [Vo (r+, ϕ+)− Vo (r−, ϕ−)]) dγdµ) , (16)

where

γ0 =

√
1− (εµ)2 −

√
1− ε2

ε2
,

r± =

√(
ε2γ ±

√
1− ε2

)2

+ ε2µ2,

ϕ± = arg
(
ε2γ ±

√
1− ε2 + iεµ

)
+ α.

In the domain 1/2 ≤ ρ ≤ 1, which corresponds to 0 ≤ ε ≤√
3/2, parameters ϕ± can be represented in the form

ϕ+ = arctan
(

εµ√
1− ε2 + ε2γ

)
+ α,

ϕ− = π − arctan
(

εµ√
1− ε2 − ε2γ

)
+ α, (17)

and application of the expansion procedure with respect
to ε yields

Φp (ρ, α) = −2Vo +
1
5

(
4
∂Vo

∂r
− ∂2Vo

∂ϕ2

)(
1− ρ2

)
+

1
700

(
4

[
16
(
∂Ve

∂ϕ

)2

− 27

]
∂2Vo

∂ϕ2
− 5

∂4Vo

∂ϕ4

+8

{[
14 + 8

(
∂Ve

∂ϕ

)2
]
∂Vo

∂r
+ 5

∂3Vo

∂r∂ϕ2
− 20

∂2Vo

∂r2

})
×
(
1− ρ2

)2
+O

((
1− ρ2

)3)
. (18)

Here the right-hand value should be taken for r = 1 and
ϕ = α.

General quadrature formula (15) and expansion (18)
do not provide an explicit relation between the phase
transfer function and the wave aberration function. How-
ever, the results obtained enable us to make the following
remarks and conclusions.

(i) Although the phase transfer function contains infor-
mation about both even and odd aberration terms, data
on the even component of the wave aberration function
can be hardly obtained. In the absence of the odd-order
aberrations (Vo ≡ 0) this is easily seen as equation (14)
yields purely real value of the OTF (the same can be
demonstrated with initial expression (6) provided that
the exit pupil possesses enough symmetry). A less trivial
result is that even if the odd-order aberrations are sig-
nificant, information about the even-order ones is deeply
hidden in modulation factors of higher-order terms of the
expansion (18) and, in view of remark (iii) below, is prac-
tically unavailable.

(ii) If the phase transfer function can be retrieved via
the image analysis, one gets an opportunity of at least
some odd-order aberration assessment for granted, which
is of primary importance for imaging systems operating in
autonomous conditions. Estimation of aberrations due to
the inhomogeneous thermal load of sun radiation in the
space-borne systems of earth observation [8] is an example.

(iii) The efficiency of methods based on the above
quasi-analytical expansion is seriously limited by the noise
factors. Their influence increases with the term order as
successively higher derivatives are involved in more and
more complicated algebraic structures. Terms of the or-
der

(
1− ρ2

)3 and higher are of doubtful practical signifi-
cance; the three-term expansion (18) corresponds to lim-
iting cases of excellent image detection, wherein one deals
with cumulative data and stable, long-term aberrations.

(iv) Concrete methods of inversion of the obtained
relationship and analysis of their efficiency require con-
sideration of a particular imaging train, detecting sys-
tem, data-processing scheme (with or without cumulative
data), range of possible signals, statistical properties of
the noise, etc. This consideration goes outside the scope
of this Rapid Note and will be published elsewhere. In
most cases the phase-restoration technique in question is
limited by noise to a few first aberrations, such as tilt,
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lateral coma, and three-leaf clover (but it is these aberra-
tions that are of primary importance in many problems of
adaptive optics).

(v) Even remaining within the framework of the gen-
eral consideration given above, we can suggest the al-
gorithm of quasi-analytical restoration to the odd-order
aberrations, in which the application of an interpolation
procedure, which provides us the Taylor expansion coef-
ficients with “differential” methods and thus inevitably
leads to the noise amplification, is compensated by inte-
gration (averaging) with respect to the polar angle at the
final stage of separation of the aberration terms. For the
sake of brevity we will constrain the restoration accuracy
to the aberrations listed in remark (iv), which is equiva-
lent to representation of the wave aberration function via
the first ten Zernike polynomials

Ve (r, ϕ) = Ψ0,0 + Ψ2,−2r
2 sin 2ϕ+ Ψ2,0

(
2r2 − 1

)
+ Ψ2,2r

2 cos 2ϕ,

Vo (r, ϕ) = Ψ1,−1r sinϕ+ Ψ1,1r cosϕ+ Ψ3,−3r
3 sin 3ϕ

+ Ψ3,−1

(
3r3 − 2r

)
sinϕ+ Ψ3,1

(
3r3 − 2r

)
cosϕ

+ Ψ3,3r
3 cos 3ϕ.

Then restoration of the odd-order aberration coefficients
Ψ1,±1, Ψ3,±1, and Ψ3,±3 from the set of given values
of Φ (u, v) is achievable within the following three steps.

(1) Polar-coordinate representation. The dimensionless
polar coordinate system ε ∈ [0, 1] , α ∈ [0, π] is intro-
duced,

ε =
√

1− ρ2 =

√
1−

(
λz

2R

)
(u2 + v2),

α = arg (u+ iv) ,

and the set of measured values of the phase transfer func-
tion is represented in this coordinate system

Φε (ε, α) = Φp

(
ρ =

√
1− ε2, α

)
= Φ

(
u =

2R
λz

√
1− ε2 cosα, v =

2R
λz

√
1− ε2 sinα

)
.

(19)

(2) Taylor expansion. Using some interpolation procedures
(see, for example, [12]), the obtained set is converted into
the Taylor series with respect to ε2

Φε (ε, α) = Φ0 (α) + Φ1 (α) ε2 + Φ2 (α) ε4 + ... (20)

that gives us functions Φ0 and Φ1 of only one argument.
Comparing representations (18) and (20) we get

Φ0 (α) = −2V0 (1, α) ,

Φ1 (α) =
1
5

(
4
∂Vo

∂r
(1, α)− ∂2Vo

∂ϕ2
(1, α)

)
. (21)

(3) Separation of the aberration terms. Applying the in-

tegral operators
1
π

∫ 2π

0

(∗)
(

sin 3α
cos 3α

)
dα to Φ0 (α) and

1
π

∫ 2π

0

(∗)
(

sinα
cosα

)
dα to both Φ0 (α) and Φ1 (α) we get

Φ0,±3 = −2Ψ3,±3, Φ0,±1 = −2 (Ψ1,±1 + Ψ3,±1) ,

Φ1,±1 =
1
5

(5Ψ1,±1 + 29Ψ3,±1) , (22)

where

Φ0,±3 =
1
π

∫ 2π

0

Φ0 (α)

(
cos 3α
sin 3α

)
dα,

Φk,±1 =
1
π

∫ 2π

0

Φk (α)

(
cosα
sinα

)
dα, k = 0, 1. (23)

Solving the system of linear equations (22) yields a repre-
sentation of the desired odd-order aberration coefficients
via the data retrieved from the phase transfer function

Ψ1,±1 = − 1
48

(29Φ0,±1 + 10Φ1,±1) ,

Ψ3,±1 = − 5
48

(Φ0,±1 + 2Φ1,±1) , Ψ3,±3 = −1
2
Φ0,±3.
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